
59

CHAPTER 3. 
Broad-Scale Patterns of 
Forest Fire Occurrence 
across the 50 United States 
and the Caribbean 
Territories, 2019

Kevin M. Potter

INTRODUCTION

A
s a pervasive disturbance agent operating at 
many spatial and temporal scales, wildland 
fire is a key abiotic factor affecting forest 

health both positively and negatively. In some 
ecosystems, for example, wildland fires have 
been essential for regulating processes that 
maintain forest health (Lundquist and others 
2011). Wildland fire is an important ecological 
mechanism that shapes the distributions of 
species, maintains the structure and function of 
fire-prone communities, and acts as a significant 
evolutionary force (Bond and Keeley 2005). At 
the same time, wildland fires have created forest 
health (i.e., sustainability) problems in some 
ecosystems (Edmonds and others 2011). 

Current fire regimes on more than half of 
the forested area in the conterminous United 
States have been moderately or significantly 
altered from historical regimes (Barbour and 
others 1999), potentially altering key ecosystem 
components such as species composition, 
structural stage, stand age, canopy closure, 
and fuel loadings (Schmidt and others 2002). 
Fires in some regions and ecosystems have 
become larger, more intense, and more 
damaging because of the accumulation of fuels 
as a result of prolonged fire suppression (Pyne 
2010). In some regions, plant communities 
have experienced or are undergoing rapid 
compositional and structural changes as a 
result of fire suppression (Nowacki and Abrams 
2008). Additionally, changes in fire intensity 
and recurrence could result in decreased forest 

resilience and persistence (Lundquist and 
others 2011), and fire regimes altered by global 
climate change could cause large-scale shifts 
in vegetation spatial patterns (McKenzie and 
others 1996). 

At the same time, large wildland fires also 
can have long-lasting social and economic 
consequences, which include the loss of human 
life and property, smoke-related human health 
impacts, and the economic cost and dangers of 
fighting the fires themselves (Gill and others 
2013, Richardson and others 2012). 

This chapter presents analyses of daily 
satellite-based fire occurrence data that map 
and quantify the locations and intensities 
of fire occurrences spatially across the 
conterminous United States, Alaska, Hawaii, 
and the Caribbean territories in 2019. It also 
compares 2019 fire occurrences, within a 
geographic context, to all the recent years for 
which such data are available. Quantifying and 
monitoring such large-scale patterns of fire 
occurrence across the United States can help 
improve our understanding of the ecological 
and economic impacts of fire as well as the 
appropriate management and prescribed use of 
fire. Specifically, large-scale assessments of fire 
occurrence can help identify areas where specific 
management activities may be needed, or where 
research into the ecological and socioeconomic 
impacts of fires may be required. Additionally, 
given the potential for climate change and 
shifting species distributions to alter historic fire 
regimes, quantifying the location and frequency 
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of forest fire occurrences across the United 
States can help us to better understand emerging 
spatiotemporal patterns of fire occurrence.

METHODS
Data

Annual monitoring and reporting of active 
wildland fire events using the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
Active Fire Detections for the United States 
database (USDA Forest Service 2020) allow 
analysts to spatially display and summarize fire 
occurrences across broad geographic regions 
(Coulston and others 2005; Potter 2012a, 2012b, 
2013a, 2013b, 2014, 2015a, 2015b, 2016, 
2017, 2018, 2019, 2020a). A fire occurrence 
is defined as one daily satellite detection of 
wildland fire in a 1-km pixel, with multiple 
fire occurrences possible on a pixel across 
multiple days resulting from a single wildland 
fire that lasts more than 1 day. The data are 
derived using the MODIS Rapid Response 
System (Justice and others 2002, 2011) to 
extract fire location and intensity information 
from the thermal infrared bands of imagery 
collected daily by two satellites at a resolution 
of 1 km, with the center of a pixel recorded as 
a fire occurrence (USDA Forest Service 2020). 
The Terra and Aqua satellites’ MODIS sensors 
identify the presence of a fire at the time of 
image collection, with Terra observations 
collected in the morning and Aqua observations 
collected in the afternoon. The resulting fire 
occurrence data represent only whether a fire 
was active because the MODIS data bands 

may not differentiate between a hot fire in a 
relatively small area (0.01 km2, for example) 
and a cooler fire over a larger area (1 km2, 
for example) if the foreground to background 
temperature contrast is not sufficiently high. 
The MODIS Active Fire database does well at 
capturing large fires during cloud-free conditions 
but may underrepresent rapidly burning, small, 
and low-intensity fires, as well as fires in areas 
with frequent cloud cover (Hawbaker and 
others 2008). For large-scale assessments, the 
dataset represents a good alternative to the use 
of information on ignition points, which may 
be preferable but can be difficult to obtain or 
may not exist (Tonini and others 2009). More 
information about the performance of this 
product is available in Justice and others (2011). 
The fire occurrence data additionally do not 
identify fires intentionally set for management 
purposes (controlled burns), which are common 
in some parts of the United States, particularly in 
the South. 

It is important to underscore that estimates of 
burned area and calculations of MODIS-detected 
fire occurrences are two different metrics for 
quantifying fire activity within a given year. 
Most importantly, the MODIS data contain 
both spatial and temporal components because 
persistent fire will be detected repeatedly over 
several days on a given 1-km pixel. In other 
words, a location can be counted as having a 
fire occurrence multiple times, once for each 
day a fire is detected at the location. Analyses 
of the MODIS-detected fire occurrences, 
therefore, measure the total number of daily 
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1-km pixels with fire during a year, as opposed 
to quantifying only the area on which fire 
occurred at some point during the course of the 
year. A fire detected on a single pixel for every 
day in the month of July, for example, would be 
equivalent to 31 fire occurrences.

The Terra and Aqua satellites, which carry 
the MODIS sensors, were launched in 1999 
and 2002, respectively, and will eventually be 
decommissioned. An alternative fire occurrence 
data source is the Visible Infrared Imaging 
Radiometer Suite (VIIRS) sensor on board the 
Suomi National Polar-orbiting Partnership 
(Suomi NPP) weather satellite. The transition to 
this new data source will require a comparison 
of fire occurrence detections between it and 
MODIS. This is because VIIRS data are available 
from 2014 onward (USDA Forest Service 2020), 
but it will be important for assessments of fire 
occurrence trends to be able to analyze as long 
a window of time as possible (i.e., from the 
beginning of MODIS data availability). 

Analyses

These MODIS products for 2019, and for the 
18 preceding full years of data, were processed 
in ArcMap® (ESRI 2017) to determine forest 
fire occurrence density (that is, the number of 
fire occurrences/100 km2 [10 000 ha] of tree 
canopy cover area) for each ecoregion section 
in the conterminous United States (Cleland 
and others 2007), for ecoregions on each of 
the major islands of Hawaii (Potter 2020b), 
and for the islands of the Caribbean territories 
of Puerto Rico and the U.S. Virgin Islands. For 

the current analyses, the forest fire occurrence 
density metrics for the conterminous 48 
States, Hawaii, and the Caribbean territories 
(the number of fire occurrences/100 km2 
of tree canopy cover area) were calculated 
after screening out wildland fires that did not 
intersect with tree canopy data. The tree canopy 
data had been resampled to 240 m from a 30-m 
raster dataset that estimates percentage of tree 
canopy cover (from 0 to 100 percent) for each 
grid cell; this dataset was generated from the 
2011 National Land Cover Database (NLCD) 
(Homer and others 2015) through a cooperative 
project between the Multi-Resolution Land 
Characteristics Consortium and the U.S. 
Department of Agriculture Forest Service, 
Geospatial Technology and Applications Center 
(GTAC) (Coulston and others 2012). For our 
purposes, we treated any cell with >0-percent 
tree canopy cover as forest. Comparable tree 
canopy cover data were not available for Alaska, 
so we instead created a 240-m-resolution layer 
of forest and shrub cover from the 2011 NLCD. 
The MODIS fire occurrence detection data 
were then intersected with this layer and with 
ecoregion sections for the State (Spencer and 
others 2002) to calculate the number of fire 
occurrences/100 km2 of forest and shrub cover 
within each ecoregion section in Alaska. In 
Forest Health Monitoring national reports before 
2019, the number of fire occurrences/100 km2 
of forest was determined for the conterminous 
States, Alaska, and Hawaii using a forest 
cover mask derived from MODIS imagery 
by the Forest Service GTAC (USDA Forest 
Service 2008).
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The total numbers of forest fire occurrences 
were also determined separately for the 
conterminous States, Alaska, Hawaii, and the 
Caribbean territories after clipping the MODIS 
fire occurrences by the canopy cover or tree and 
shrub cover data.

The fire occurrence density value for each 
of the ecoregions of the States and for the 
Caribbean islands in 2019 was then compared 
with the mean fire density values for the first 18 
full years of MODIS Active Fire data collection 
(2001–2018). Specifically, the difference of the 
2019 value and the previous 18-year mean 
for an ecoregion was divided by the standard 
deviation across the previous 18-year period, 
assuming a normal distribution of fire density 
over time in the ecoregion. The result for each 
ecoregion was a standardized z-score, which 
is a dimensionless quantity describing the 
degree to which the fire occurrence density in 
the ecoregion in 2019 was higher, lower, or 
the same relative to all the previous years for 
which data have been collected, accounting 
for the variability in the previous years. The 
z-score is the number of standard deviations 
between the observation and the mean of the 
historic observations in the previous years. 
Approximately 68 percent of observations would 
be expected within one standard deviation of 
the mean, and 95 percent within two standard 
deviations. Near-normal conditions are classified 
as those within a single standard deviation of the 
mean, although such a threshold is somewhat 
arbitrary. Conditions between about one 
and two standard deviations of the mean are 
moderately different from mean conditions but 

are not significantly different statistically. Those 
outside about two standard deviations would be 
considered statistically greater than or less than 
the long-term mean (at p <0.025 at each tail of 
the distribution).

Additionally, we used the Spatial Association 
of Scalable Hexagons (SASH) analytical 
approach to identify forested areas in the 
conterminous United States with higher-
than-expected fire occurrence density in 
2019. This method identifies locations where 
ecological phenomena occur at greater or lower 
occurrences than expected by random chance 
and is based on a sampling frame optimized for 
spatial neighborhood analysis, adjustable to the 
appropriate spatial resolution, and applicable to 
multiple data types (Potter and others 2016). 
Specifically, it consists of dividing an analysis 
area into scalable equal-area hexagonal cells 
within which data are aggregated, followed by 
identifying statistically significant geographic 
clusters of hexagonal cells within which mean 
values are greater or less than those expected by 
chance. To identify these clusters, we employed 
a Getis-Ord Gi* hot spot analysis (Getis and Ord 
1992) in ArcMap® 10.5.1 (ESRI 2017). 

The spatial units of analysis were 9,810 
hexagonal cells, each approximately 834 km2 
in area, generated in a lattice across the 
conterminous United States using intensification 
of the Environmental Monitoring and 
Assessment Program (EMAP) North American 
hexagon coordinates (White and others 1992). 
These coordinates are the foundation of a 
sampling frame in which a hexagonal lattice 
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was projected onto the conterminous United 
States by centering a large base hexagon 
over the region (Reams and others 2005, 
White and others 1992). The hexagons are 
compact and uniform in their distance to the 
centroids of neighboring hexagons, meaning 
that a hexagonal lattice has a higher degree of 
isotropy (uniformity in all directions) than does 
a square grid (Shima and others 2010). These 
are convenient and highly useful attributes for 
spatial neighborhood analyses. These scalable 
hexagons also are independent of geopolitical 
and ecological boundaries, avoiding the 
possibility of different sample units (such as 
counties, States, or watersheds) encompassing 
vastly different areas (Potter and others 2016). 
We selected hexagons 834 km2 in area because 
this is a manageable size for making monitoring 
and management decisions in analyses across 
the conterminous United States (Potter and 
others 2016).

Fire occurrence density values for each 
hexagon were quantified as the number of 
forest fire occurrences/100 km2 of tree canopy 
cover area within the hexagon. The Getis-Ord 
Gi* statistic was used to identify clusters of 
hexagonal cells with fire occurrence density 
values higher than expected by chance. This 
statistic allows for the decomposition of a 
global measure of spatial association into its 
contributing factors, by location, and is therefore 
particularly suitable for detecting outlier 
assemblages of similar conditions in a dataset, 
such as when spatial clustering is concentrated 
in one subregion of the data (Anselin 1992).

Briefly, Gi* sums the differences between the 
mean values in a local sample, determined in 
this case by a moving window of each hexagon 
and its 18 first- and second-order neighbors 
(the 6 adjacent hexagons and the 12 additional 
hexagons contiguous to those 6) and the 
global mean of the 9,644 hexagonal cells with 
tree canopy cover (of the total 9,810) in the 
conterminous United States. As described in 
Laffan (2006), it is calculated as

where

Gi* = the local clustering statistic (in this case, 
for the target hexagon)

i = the center of local neighborhood (the 
target hexagon)

d = the width of local sample window (the 
target hexagon and its first- and second-
order neighbors)

xj = the value of neighbor j

w i j = the weight of neighbor j from location i 
(all the neighboring hexagons in the moving 
window were given an equal weight of 1)

n = number of samples in the dataset (the 
9,644 hexagons containing tree cover)

Wi* = the sum of the weights
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s*1   i = the number of samples within d of the 
central location (19: the focal hexagon and its 
18 first- and second-order neighbors)

x̄       *  = the mean of whole dataset (in this case, 
for all 9,644 hexagons containing tree cover)

s*      = the standard deviation of whole dataset 
(for all 9,644 hexagons containing tree cover)

Gi* is standardized as a z-score with a 
mean of 0 and a standard deviation of 1, with 
values >1.96 representing significant local 
clustering of higher fire occurrence densities 
(p <0.025) and values <-1.96 representing 
significant clustering of lower fire occurrence 
densities (p <0.025), because 95 percent of the 
observations under a normal distribution should 
be within approximately two standard deviations 
of the mean (Laffan 2006). Values between 
-1.96 and 1.96 have no statistically significant 
concentration of high or low values; a hexagon 
and its 18 neighbors, in other words, have a 
normal range of both high and low numbers of 
fire occurrences/100 km2 of tree canopy cover 
area. It is worth noting that the threshold values 
are not exact because the correlation of spatial 
data violates the assumption of independence 
required for statistical significance (Laffan 
2006). In addition, the Getis-Ord approach does 
not require that the input data be normally 
distributed, because the local Gi* values are 
computed under a randomization assumption, 
with Gi* equating to a standardized z-score that 
asymptotically tends to a normal distribution 
(Anselin 1992). The z-scores are considered to 
be reliable, even with skewed data, as long as 
the local neighborhood encompasses several 

observations (ESRI 2017), in this case, via the 
target hexagon and its 18 first- and second-
order neighbors.

RESULTS AND DISCUSSION
Trends in Forest Fire Occurrence 
Detections for 2019

The MODIS Active Fire database recorded 
40,657 forest fire occurrences across the 
conterminous United States in 2019, the fifth 
lowest in 19 full years of data collection and the 
least in a year since 2005 (fig. 3.1). This was a 
decline of approximately 47 percent from 2018 
(76,692 total forest fire occurrences), and 43 
percent lower than the mean of the previous 
18 years of data. At the same time, Alaska 
experienced a dramatic 3,740-percent increase 
in fire occurrences from 2018, from 690 to 
26,493, as well as a 157-percent increase over 
the mean of the previous years. This was the 
third most fire occurrences in Alaska in 19 years 
of data collection, and the most since 2005. 
Hawaii had only 36 fire occurrences in 2019, 
which was a 74-percent drop from 2018 (136) 
and an 88-percent decrease from the 2001–2018 
average. Finally, 18 fire occurrences were 
detected in Puerto Rico, an increase from the 
single occurrence in 2018 and about 85 percent 
above the average of 9.7 per year.

The decrease in fire occurrences in the 
conterminous United States along with the 
stark upsurge in fire occurrences in Alaska are 
in keeping with the official national wildland 
fire statistics, which are based on numbers of 
wildfires reported and area burned (National 
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Figure 3.1—Forest fire occurrences detected by Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 
through 2019 for the conterminous United States, Alaska, and Hawaii, and for the entire Nation combined. (Data 
source: U.S. Department of Agriculture Forest Service, Geospatial Technology and Applications Center, in conjunction 
with the NASA MODIS Rapid Response group)

Interagency Coordination Center 2020). 
According to these statistics, there were 50,477 
wildfires nationally in 2019 compared to 58,083 
in 2018, while the area burned declined 47 
percent from 3 548 078 ha in 2018 to 1 887 601 
ha in 2019, and was 33 percent less than the 10-
year average (National Interagency Coordination 
Center 2019, 2020). Alaska was the only region 
in the United States with a larger-than-average 
area burned as well as the only region with a 
significant increase in number of fires reported. 
Across the United States in 2019, the number of 
wildland fires and fire complexes exceeding 16 
187 ha (40,000 acres, a benchmark threshold for 
the National Interagency Coordination Center) 

was only 27, compared to 49 in 2018 and 44 
in 2017 (National Interagency Coordination 
Center 2018, 2019, 2020). Of these, all but two 
of the 15 largest U.S. fires in 2019 occurred 
in Alaska (National Interagency Coordination 
Center 2020). As noted in the Methods section 
above, estimates of burned area and numbers 
of reported fires are different metrics for 
quantifying fire activity than calculations of 
MODIS-detected fire occurrences, though they 
may be correlated.

This was not the first time that a peak fire 
year in Alaska corresponded with a decrease 
in fire occurrences in the conterminous 
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United States (fig. 3.1). In 2004 and 2005, in 
fact, the number of fire occurrences in Alaska 
exceeded those of the conterminous States, 
the only times during the MODIS period that 
this happened. Additionally, peaks of Alaska 
fire occurrences in 2009 and 2015 were 
followed the next year by a marked decrease 
in conterminous States fire occurrences. Such 
broad-scale patterns of wildfire throughout 
North America are the result of the interaction 
between climate and vegetation development 
across a range of spatial and temporal scales, 
with climate influencing fine fuel moisture, 
ignition frequency, and rates of wildfire spread 
at annual to interannual timescales (Gedalof 
2011) and with years of high fire activity in 
the West characterized by widespread and 
regionally distinct summer droughts (Trouet 
and others 2010). Interannual to multidecadal 
variability in sea surface temperatures, 
associated with the El Niño-Southern Oscillation 
(ENSO), Pacific Decadal Oscillation (PDO), 
and Atlantic Multidecadal Oscillation (AMO), 
drive intermediate-term patterns in wildfire 
occurrence in North America (Kitzberger and 
others 2007). Further research could help 
illuminate the relationships between climate and 
wildfire occurrences within and between regions 
of the conterminous 48 States and Alaska.

Areas with the highest fire occurrence 
densities in 2019 were in southwestern Idaho, 
central California, and eastern Kansas (fig. 3.2). 
The Owyhee Uplands (342C) was the ecoregion 
section with the highest fire occurrence density 
in 2019, with 8.8 fire occurrences/100 km2 of 
tree canopy cover (table 3.1). (In the previous 

year, the ecoregion section with the highest fire 
occurrence density was the Northern California 
Coast Ranges [M261B], which experienced 
31.8 fire occurrences/100 km2 of tree canopy 
cover [Potter 2020a]). Two other ecoregion 
sections had relatively high fire occurrence 
densities: 262A–Great Valley in California 
(8.4 fire occurrences/100 km2 of tree canopy 
cover) and 251F–Flint Hills in Kansas (6.7 fire 
occurrences/100 km2 of tree canopy cover). A 
handful of ecoregion sections in the Southeast, 
in Arizona and New Mexico, in northern 
California, and in Oregon and Washington had 
moderate fire occurrence densities (fig. 3.2). The 
relatively low fire occurrence densities across 
the conterminous 48 States were attributable 
at least in part to the atypical summer of 2019, 
during which spring-like temperatures held 
until early July, and long-duration and hot 
high-pressure ridge events did not develop in 
the West (National Interagency Coordination 
Center 2020).

On the other hand, Alaska experienced 
extraordinarily hot and dry conditions in June 
and July, with July 2019 being the hottest 
month on record for the State; conditions were 
critically dry in the interior as the summer 
rains arrived later than usual in August 
and missed the south-central part of Alaska 
(National Interagency Coordination Center 
2020). As a result, fire occurrence densities 
across large swaths of central and south-
central Alaska were moderate, with densities 
very high in 132A–Yukon-Old Crow Basin 
(19.4 fire occurrences/100 km2 of forest and 
shrub cover) (fig. 3.3). This ecoregion section 
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of tree canopy cover, 2019
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Figure 3.2—The number of forest fire occurrences, per 100 km2 (10 000 ha) of tree canopy coverage area, by ecoregion section within the conterminous 
48 States, for 2019. The gray lines delineate ecoregion sections (Cleland and others 2007). Tree canopy cover is based on data from a cooperative 
project between the Multi-Resolution Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and 
Applications Center using the 2011 National Land Cover Database. See figure 1.1A for ecoregion identification. (Source of fire data: U.S. Department 
of Agriculture Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Table 3.1—The 15 ecoregion sections in the conterminous United States with the highest fire 
occurrence densities in 2019

Section Name
Tree  

canopy area
Fire 

occurrences Densitya

km 2 number

342C Owyhee Uplands 16.7 148 8.8

262A Great Valley 19.4 164 8.4

251F Flint Hills 57.8 387 6.7

232B Gulf Coastal Plains and Flatwoods 888.7 4770 5.4

232J Southern Atlantic Coastal Plains and Flatwoods 604.0 2,865 4.7

342F Central Basin and Hills 16.5 77 4.7

232K Florida Coastal Plains Central Highlands 149.0 632 4.2

M261C Northern California Interior Coast Ranges 18.2 73 4.0

M261B Northern California Coast Ranges 114.1 439 3.8

M333A Okanogan Highland 247.9 919 3.7

232D Florida Coastal Lowlands-Gulf 134.9 491 3.6

M313A White Mountains-San Francisco Peaks-Mogollon Rim 202.5 717 3.5

232G Florida Coastal Lowlands-Atlantic 138.5 471 3.4

331A Palouse Prairie 33.4 107 3.2

313C Tonto Transition 17.5 55 3.2

a Density = fire occurrences/100 km2 of tree canopy coverage area.

was the location of the Chalkyitsik Complex 
of fires, which burned 204 463 ha and cost 
approximately $7 million to contain (National 
Interagency Coordination Center 2020).

In Hawaii, only a single area had at least 
moderate fire occurrence density in 2019, the 
Lowland/Leeward Dry ecoregion on Maui 
island (LLDm) with fire occurrence density of 
5.5/100 km2 of tree canopy cover (fig. 3.4). 

All other ecoregions in the State had 2019 fire 
occurrence densities of ≤3/100 km2 of tree 
canopy cover. This followed a year during which 
a dramatic Big Island lava eruption in the lower 
east rift zone of the Kīlauea volcano burned 
forests and homes at the very eastern tip of the 
island (Andrews 2018), resulting in a high fire 
occurrence density (7.4/100 km2 of tree canopy 
cover) in the island’s Lowland Wet-Hilo-Puna 
ecoregion (LWh-hp) (Potter 2020a). 
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Figure 3.3—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forest and shrub cover, by ecoregion section within Alaska, for 2019. The 
gray lines delineate ecoregion sections (Spencer and others 2002). Forest and shrub cover are derived from the 2011 National Land Cover Database. See 
figure 1.1B for ecoregion identification. (Source of fire data: U.S. Department of Agriculture Forest Service, Geospatial Technology and Applications Center, 
in conjunction with the NASA MODIS Rapid Response group)
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Figure 3.4—The number of forest fire occurrences, per 100 km2 (10 000 ha) of tree canopy coverage area, by island/ecoregion 
combination in Hawaii, for 2019. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution 
Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and Applications 
Center using the 2011 National Land Cover Database. See table 1.1 for ecoregion identification. (Source of fire data: U.S. 
Department of Agriculture Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA 
MODIS Rapid Response group)
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Finally, 2019 fire occurrence densities were 
≤1/100 km2 of tree canopy cover for all of the 
islands of the U.S. Caribbean territories (Puerto 
Rico and the U.S. Virgin Islands) (fig. 3.5).

Comparison to Longer Term Trends

The nature of the MODIS Active Fire data 
makes it possible to contrast short-term (2019) 
forest fire occurrence densities with longer term 
trends encompassing the first 18 full years of 
data collection (2001–2018) for ecoregions in 
the conterminous States, Alaska, and Hawaii, 
and for Caribbean islands. Across that multiyear 
period, the highest mean annual fire occurrences 
in the conterminous States are in ecoregion 
sections of the northern Rocky Mountains, 
California, the Southwest, the southern Great 
Plains, and the Southeastern Coastal Plain 
(fig. 3.6A). Meanwhile, ecoregions elsewhere 
generally experienced ≤3 fire occurrences/100 
km2 of tree canopy cover annually, with the 
Northeast and most of the Midwest having ≤1. 
The M332A–Idaho Batholith in central Idaho 
had the highest fire occurrence density on 
average (mean annual fire occurrence density of 
12.8), followed by M261A–Klamath Mountains 
of northwestern California and southeastern 
Oregon (10.6) (table 3.2). Other ecoregion 
sections with high mean fire occurrence 
densities (6.01–12.00 fire occurrences/100 km2 
of canopy cover) were located along the Gulf 
Coast in the Southeast; in coastal, northern, 
and central areas of California; in north-central 
Washington; in central Arizona and New 
Mexico; in the northern Rocky Mountains; and 
in central Kansas and northeastern Oklahoma 

(table 3.2). The ecoregion section with the 
greatest annual variation in fire occurrence 
densities from 2001 to 2018 was again M332A–
Idaho Batholith, with more moderate variation 
in California, northeastern Washington and 
northwestern Idaho, southern Oregon, western 
Montana, and central Arizona and west-central 
New Mexico (fig. 3.6B). The Northeast and most 
of the Midwest had the lowest variation, while 
relatively low variation was also present across 
the Southeast, the central Rocky Mountain 
States, the Great Basin, and central Oregon 
and Washington. 

Most of the conterminous United States 
experienced near-normal fire occurrence 
densities in 2019, compared to the previous 
17-year mean and accounting for variability 
over time (fig. 3.6C). As determined by the 
calculation of standardized fire occurrence 
z-scores, a few ecoregions in the Northeast and 
scattered elsewhere had significantly higher 
fire occurrence densities than normal. The 
ecoregion section with the highest z-score in 
2019 was 212J–Southern Superior Uplands, an 
area with typically very few fire occurrences. 
Other similar ecoregion sections were 211A–
Aroostook Hills and Lowlands of northern 
Maine, 221A–Lower New England along the 
Atlantic Coast from New York to Maine, 342C–
Southern Superior Uplands in southwest Idaho, 
315B–Texas High Plains in western Texas and 
eastern New Mexico, 331J–Northern Rio Grande 
Basin in north-central New Mexico and south-
central Colorado, and 262A–Great Valley in 
central California.
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Figure 3.5—The number of forest fire occurrences, per 100 km2 (10 000 ha) of tree canopy coverage area, by island in Puerto Rico and 
the U.S. Virgin Islands, for 2019. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land 
Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and Applications Center using the 
2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture Forest Service, Geospatial Technology and 
Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Figure 3.6—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of tree canopy coverage area from 2001 
through 2018, by ecoregion section within 
the conterminous 48 States. (C) Degree 
of 2019 fire occurrence density excess or 
deficiency by ecoregion relative to 2001–
2018 and accounting for variation over 
that time period. The gray lines delineate 
ecoregion sections (Cleland and others 
2007). Tree canopy cover is based on data 
from a cooperative project between the 
Multi-Resolution Land Characteristics 
Consortium (Coulston and others 2012) and 
the Forest Service Geospatial Technology 
and Applications Center using the 2011 
National Land Cover Database. (Source of 
fire data: U.S. Department of Agriculture 
Forest Service, Geospatial Technology and 
Applications Center, in conjunction with the 
NASA MODIS Rapid Response group)
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Table 3.2—The 15 ecoregion sections in the conterminous United States with the highest 
mean annual fire occurrence densities from 2001 to 2018

Section Name
Tree  

canopy area

Mean annual 
fire occurrence 

densitya

km 2

M332A Idaho Batholith 338.9 12.8

M261A Klamath Mountains 338.5 10.6

M262B Southern California Mountain and Valley 58.1 8.8

M261E Sierra Nevada 427.8 7.9

M313A White Mountains-San Francisco Peaks-Mogollon Rim 202.5 7.7

313C Tonto Transition 17.5 7.5

251F Flint Hills 57.8 6.9

M261B Northern California Coast Ranges 114.1 6.7

M242D Northern Cascades 251.1 6.7

261A Central California Coast 66.8 6.3

232B Gulf Coastal Plains and Flatwoods 888.7 6.1

M332F Challis Volcanics 72.2 6.1

M333C Northern Rockies 176.3 5.9

331A Palouse Prairie 33.4 5.8

M332B Northern Rockies and Bitterroot Valley 154.9 5.7

a Mean annual fire occurrence density = fire occurrences/100 km2 of tree canopy coverage area.
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A few ecoregion sections in the middle part of 
the country had 2019 fire occurrence densities 
that were lower than the longer term as indicated 
by z-scores that were ≤-1: 331E–Northeastern 
Glaciated Plains in central and northwest North 
Dakota and northeastern Montana; 332E–South-
Central Great Plains in central Kansas and 
south-central Nebraska; 332A–Northeastern 
Glaciated Plains in central North Dakota; and 
331D–Northwestern Glaciated Plains in north-
central Montana (fig. 3.6C). Each of these has a 

relatively low proportion of tree canopy cover, 
and each had a very low fire occurrence density 
score in 2019.

In Alaska, meanwhile, the central and east-
central parts of the State had moderate mean 
annual fire occurrence densities for 2001–2018, 
specifically in 132A–Yukon-Old Crow Basin 
and M132E–Ray Mountains (fig. 3.7A). These 
ecoregion sections, along with M132C–Yukon-
Tanana Uplands and M132F–North Ogilvie 
Mountains, were the most variable over the 
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Figure 3.7—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of forest and shrub cover from 2001 
through 2018, by ecoregion section 
in Alaska. (C) Degree of 2019 fire 
occurrence density excess or deficiency 
by ecoregion relative to 2001–2018 
and accounting for variation over that 
time period. The gray lines delineate 
ecoregion sections (Spencer and others 
2002). Forest and shrub cover are 
derived from the 2011 National Land 
Cover Database. (Source of fire data: 
U.S. Department of Agriculture Forest 
Service, Geospatial Technology and 
Applications Center, in conjunction 
with the NASA MODIS Rapid 
Response group)
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18- year period preceding 2019 (fig. 3.7B). 
In 2019, much of the State had higher fire 
occurrence densities compared to the previous 
18 years and accounting for variability 
(fig. 3.7C). The ecoregion sections that had 
many more fire occurrence densities than 
expected were 132A–Yukon-Old Crow Basin in 
the east; M122A–Seward Peninsula in the west; 
M132B–Kuskokwim Mountains and 131B–
Bristol Bay Lowlands in the southwest; 133A–
Cook Inset Basin, M241C–Chugach-St. Elias 
Mountains, and M134A–Wrangell Mountains in 
the south-central and southeastern parts of the 
State; and M241E–Northern Coast Mountains 
in the panhandle. Other ecoregions in western 
Alaska had fire occurrence densities that were 
moderately or slightly higher than expected.

In Hawaii, the Lowland Wet-Hilo-Puna 
ecoregion (LWh-hp) of the Big Island had both 
the highest annual fire occurrence density mean 
(fig. 3.8A) and variability (fig. 3.8B) during the 
2001–2018 period. The annual mean was ≤1 
fire occurrence/100 km2 of tree cover for all 
other ecoregions with the exception of the Mesic 
region on the Big Island (MEh), which was 2.7. 
In 2019, ecoregions on three other islands had 
fire occurrence densities higher than expected, 
controlling for variability over the previous 18 
years (z-score >1). Three ecoregions had many 
more fire occurrences than expected: Lowland/
Leeward Dry ecoregion on Maui (LLDm), Mesic 
on Oʻahu (MEo), and Lowland/Leeward Dry 
on Kauaʻi (LLDk) (fig. 3.7C). An additional 
ecoregion had moderately more fire occurrences 
than expected: Lowland Wet on Oʻahu (LWo).

Finally, the 2001–2018 fire occurrence means 
and standard deviations were ≤1 for all the 
islands of the Caribbean territories of Puerto 
Rico and the U.S. Virgin Islands (figs. 3.9A and 
3.9B). Only Puerto Rico was outside the range 
of near-normal fire occurrence density (z-score 
≤-1 or >1) in 2019, having moderately more fire 
occurrences than expected (fig. 3.9C).

Geographical Hot Spots of Fire 
Occurrence Density

The results presented thus far summarize 
the 2019 fire occurrence data at the ecoregion 
scale (or by island in the Caribbean territories). 
Geographic hot spot analyses, conducted 
across the conterminous United States using 
analysis units smaller than ecoregions, can 
offer additional insights into where, statistically, 
fire occurrences are more concentrated than 
expected by chance. As noted above, the 2019 
wildfire season was relatively mild in the 
conterminous States compared to recent years. 
The hot spot analysis, however, is limited to a 
single year and therefore identifies areas that 
have higher-than-expected fire occurrence 
densities in 2019 compared to the entire study 
region. For 2019, the SASH method detected 
two geographic hot spots of very high fire 
occurrence density (Gi* >12 and ≤24) as well 
as several hot spots of high density (Gi* >6 and 
≤12) (fig. 3.10). 

The hot spots of very high fire occurrence 
density were in southern Arizona (322B–
Sonoran Desert and 321A–Basin and Range) 
and in southeastern Georgia (232B–Gulf 
Coastal Plains and Flatwoods). Hot spots of 
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Figure 3.8—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of tree canopy coverage area from 2001 
through 2018, by island/ecoregion 
combination in Hawaii. (C) Degree of 
2019 fire occurrence density excess or 
deficiency by ecoregion relative to 2001–
2018 and accounting for variation over 
that time period. Tree canopy cover 
is based on data from a cooperative 
project between the Multi-Resolution 
Land Characteristics Consortium 
(Coulston and others 2012) and the 
Forest Service Geospatial Technology 
and Applications Center using the 
2011 National Land Cover Database. 
(Source of fire data: U.S. Department of 
Agriculture Forest Service, Geospatial 
Technology and Applications Center, 
in conjunction with the NASA MODIS 
Rapid Response group)
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Figure 3.9—(A) Mean number and (B) standard deviation of forest fire occurrences per 100 km2 (10 000 ha) of forested area from 2001 through 2018, 
by island in Puerto Rico and the U.S. Virgin Islands. (C) Degree of 2019 fire occurrence density excess or deficiency by ecoregion relative to 2001–2018 
and accounting for variation over that time period. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land 
Characteristics Consortium (Coulston and others 2012) and the U.S. Department of Agriculture Forest Service, Geospatial Technology and Applications Center 
using the 2011 National Land Cover Database.
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Figure 3.10—Hot spots of fire occurrence across the conterminous United States for 2019. Values are Getis-Ord Gi* scores, with values >2 
representing significant clustering of high fire occurrence densities. (No areas of significant clustering of lower fire occurrence densities, <-2, 
were detected). The gray lines delineate ecoregion sections (Cleland and others 2007). Background tree canopy cover is based on data from a 
cooperative project between the Multi-Resolution Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial 
Technology and Applications Center using the 2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture Forest 
Service, Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid Response group) 
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high fire occurrence density were detected 
in eastern Kansas (255A–Cross Timbers and 
Prairie and 251F–Flint Hills), northeastern 
Washington (M333A–Okanogan Highland and 
342I–Columbia Basin), north-central California 
(262A–Great Valley and M261C–Northern 
California Interior Coast Ranges), northern 
Arizona (313A–Grand Canyon and 313D–
Painted Desert), and central Arizona (M313A–
White Mountains-San Francisco Peaks-Mogollon 
Rim, 313C–Tonto Transition, and 322B–Sonoran 
Desert) (fig. 3.10).

Hot spots of moderate fire density in 2019 
(Gi* >2 and ≤6) were identified in scattered 
locations in the Pacific Coast States, the Rocky 
Mountain States, and the Southeast (fig. 3.10). 
From west to east, these were detected in:

•	 Southwestern Oregon (M242A–Oregon and 
Washington Coast Ranges)

•	 East-central California (M261E–Sierra 
Nevada)

•	 South-central Washington (342I–Columbia 
Basin)

•	 Southeastern Oregon and southwestern Idaho 
(342C–Owyhee Uplands)

•	 Northern Idaho (M333D–Bitterroot 
Mountains)

•	 South-central Utah (M341C–Utah 
High Plateau)

•	 South-central Wyoming (342F–Central Basin 
and Hills)

•	 Southeastern New Mexico (M313B–
Sacramento-Monzano Mountains and 315A–
Pecos Valley)

•	 West-central Texas (315B–Texas High Plains, 
315C–Rolling Plains, and 321B–Stockton 
Plateau)

•	 Southeastern Kansas and northeastern 
Oklahoma (251F–Flint Hills, 255A–Cross 
Timbers and Prairie, and 251E–Osage Plains)

•	 Southeastern Oklahoma (M231A–Ouachita 
Mountains, 231E–Mid Coastal Plains-
Western, and 255A–Cross Timbers and 
Prairie)

•	 Eastern Texas and west-central Louisiana 
(234C–Atchafalaya and Red River 
Alluvial Plains)

•	 South-central Louisiana (232F–Coastal Plains 
and Flatwoods-Western Gulf and 231E–Mid 
Coastal Plains-Western)

•	 Southeastern Alabama, southern and central 
Georgia, southern South Carolina, and 
Florida panhandle (232B–Gulf Coastal Plains 
and Flatwoods, 232J–Southern Atlantic 
Coastal Plains and Flatwoods, 231A–Southern 
Appalachian Piedmont, 232C–Atlantic Coastal 
Flatwoods, and 232L–Gulf Coastal Lowlands)

•	 Central and southern Florida (232K–Florida 
Coastal Plains Central Highlands, 232D–
Florida Coastal Lowlands-Gulf, 232G–
Florida Coastal Lowlands-Atlantic, and 
411A– Everglades)

•	 South-central North Carolina (231I–Central 
Appalachian Piedmont and 232J–Southern 
Atlantic Coastal Plains and Flatwoods)

•	 Southeastern North Carolina (232C–Atlantic 
Coastal Flatwoods)

•	 Eastern North Carolina (232I–Northern 
Atlantic Coastal Flatwoods)
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CONCLUSIONS
In 2019, the number of MODIS satellite-

detected forest fire occurrences recorded for the 
conterminous States was uncharacteristically 
small compared to recent years: the fifth fewest 
in 19 full years of data collection and the least 
since 2005. Alaska, however, experienced a 
particularly severe fire season, with the most 
fire occurrences since 2005. The relatively low 
densities of fire occurrences in the conterminous 
48 States were attributable at least in part to 
mild conditions in the early summer, while 
Alaska experienced extremely hot and dry 
conditions in June and July. 

Ecoregions in southwestern Idaho, central 
California, and eastern Kansas had the highest 
forest fire occurrence densities. Geographic hot 
spots of very high fire occurrence density were 
detected in southern Arizona and southeast 
Georgia. Most of the conterminous United 
States experienced near-normal fire occurrence 
densities in 2019, compared to the previous 18-
year mean and accounting for variability over 
time, although a few ecoregions in the Northeast 
and scattered elsewhere had significantly 
higher fire occurrence densities than normal. 
Meanwhile, much of Alaska had much higher 
fire occurrence densities than normal. In Hawaii, 
ecoregions in Maui, Oʻahu, and Kauaʻi had 
many more fire occurrences than expected. 
In the Caribbean, the island of Puerto Rico 
had moderately more fire occurrences than a 
normal year.

The results of these geographic analyses 
are intended to offer insights into where fire 
occurrences have been concentrated spatially 
in a given year and compared to previous years 
but are not intended to quantify the severity of 
a given fire season. Given the limits of MODIS 
active fire detection using 1-km-resolution data, 
these products also may underrepresent the 
number of fire occurrences in some ecosystems 
where small and low-intensity fires are 
common, and where high cloud frequency can 
interfere with fire detection. These products can 
also have commission errors. However, these 
high-temporal-fidelity products currently offer 
the best means for daily monitoring of forest 
fire occurrences. 

Ecological and forest health impacts 
relating to fire and other abiotic disturbances 
are scale-dependent properties, which in 
turn are affected by management objectives 
(Lundquist and others 2011). Information 
about the concentration of fire occurrences 
may help pinpoint areas of concern for aiding 
management activities and for investigations 
into the ecological and socioeconomic impacts 
of forest fire potentially outside the range of 
historic frequency.
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